
o 

o 

o 

•
::: 
••• • ••••• • J:]I! •••• . 

~Ie ••• ···' 
e;~ •••• •• • ';.::=1 ••••• , 
~,. 

PERC. 
Systems 
Corporation 

ON-LINE DEBUGGING TECHNIQUE 

FOR THE PERQ (ODTPRQ PROGRAM) 

March 1984 

This manual describes ODTPQR Version 8.i and is for use with 
POS Version G.5 and subsequent releases until further notice. 

Copyrisht(C) 19Bi 
PERQ Systems Corporation 
2600 Liberty Avenue 
.p. O. Box 2600 
Pittsbursh, PA 15230 
(412) 355-0900 



This dqcument is not to be reproduced in any form or transmitted in 
whole or in part, without the prior written authorization of PERQ 
Systems Corporation. 

The information in this document is subject to change without 
notice and should not be construed as a commitment by PERQ Systems 
Corporation. The company assumes no responsibility for any errors 
that may appear in this document. 

PERQ Systems Corporation will make every effort to keep customers 
apprised of all documentation changes as quickly as possible. The 
Reader's Comments card is distributed with this document to request 
users' critical evaluation to assist us in preparing future 
documentation. 

PERQ and PERQ2 are trademarks of PERQ Systems Corporation. 

- ii -

--------

o 

o 

o 



o 

o 

o 

ODTPRQ 

ON-LINE DEBUOOING lECHNIQUE 

FOR PERQ (ODTPRQ PROGRAM) 

January 15, 1984 

ODTPRQ, On-line Debugging Technique for PERQ, is the program used 
to debug code or hardware on a PERQ testbed. 

1. SElUP 

Two PERQs are connected by link cables between their Link or 010 
boards. The master must be a PERQ capable of running stand-alone. 
The testbed must be at least a PERQ cardfile, power supply, . CPU, 
memory and link (or 010). Care should be taken that the master and 
testbed are both plugged into grounded outlets with grounds at the 
same potential. 

If no 10 board is used in the testbed. the 10 MEY RQST line on 
the backplane must be jumpered low. JA of the master is connected 
to JB of the testbed and JB of the master to JA of the testbed by 
5O-pin ribbon cables. The master is then powered up. The testbed 
must not be powered up until the master has booted. When the 
testbed is powered up, its boot code will detect that a link is 
active and will not try to boot from the hard disk or floppy. At 
this point ODTPRQ is run on the master. ODTPRQ takes one optional 
parameter when run. which is a state file name (see GetState). 

2. COMMANDS 

Command names may be abbreviated. Parameters may be entered in 
order on the same 1 i ne separated by spaces or commas. Defaul ted 
parameters are entered as two commas. When numbers are entered, 
they are interpreted as octal unless followed by a period. in which 
case they are interpreted as decimal. Commands may be entered from 
three sources: the keyboard. the tablet or a command file. If a 
command is issued from the keyboard with no parameters, the user 
will be prompted for them. A menu is displayed between the top and 
bottom screen windows for entering commands from the tablet. 

When a location is opened. its current value is displayed, and 
its contents may be modified. When a numeric form is allOl·:ed as a 
parameter. it consists of up to 3 characters which specify how 
numbers are to be displayed. These characters specify base. size 
and mode where base is o. d or c (octal. decimal or character). 
size is w or b (word or byte) and mode is s or u (signed or 
unsigned). The defaults are owu. 

- 1 -



ODTPRQ 

Help 
or HELP key 

Quit 

Boot 

January 15, 1984 

Print help listing. 

Return to shell. 

Boot the testbed by loading the file KRNL.BIN into 
the testbed microstore and running it. 

Memory <addr> <form> 
Open a memory word. After opening the location the 
user may type a new value or leave the value 
unchanged. A trace can be put on the value by 
typing w (see the Watch command). The user may end 
the coDDDand with return, LF to open the next 
location, A to open the previous location or = to 
prompt for the fields of the value in order to 
change them. The memory coDDDand only has a memory 
value field. 

Register <addr> <form> 
Open a register. 

Variable <segment> <routine> <offset> <form> 
Open a Pascal variable in memory •. 

Global <segment> <offset> <form> 
Open a Pascal global variable in memory. 

Virtual <segment> <offset> <fOrm> 

UCode <addr> 

Open a virtual memory variable. 

Open a microinstruction. When = is used to change 
the value, -the user is prompted for each of the 12 
fields of the microinstruction: X, Y, A, B, W, H, 
ALU, F, SF, Z, eND, JMP. The numeric form is 
always octal. Note that the microstore cannot 
actually be read, so a copy of its contents is kept 
in the master PERQ. This means that self-modifying 
code will not be displayed correctly. 

Watch <name> <x> <y> 
This causes a trace to be placed on· the current 
open location. Whenever the KRNL code is entered 
after· the user program exits, the value of the 
location is displayed, along with the 
user-specified name in the top window of the 
screen. The range of x is 0 •• 3 and y is 0 •• 24; 
however y=24 should not be used since it is the 

- 2 -

o 

o 

o 



o 

o 

o 

ODTPRQ 

Clear 

Load <file> 

January 15, 1984 

bottom of the screen window (and hence causes 
scroll ing). 

clear the low 128K words of memory. 

initial load of a micro binary. Assumes the .BIN 
extension. 

Overlay <file> load a micro binary over previously loaded code. 

QLoad <RootFile> <char> <RunFile> <boot> MBoot> 
Load Q-code (Pascal) program. This is used to load 
a system onto the testbed. The RootFile name 
provides default names for the RunFile, Boot file 
and MBoot file although the defaults can be 
overridden. The char is the boot character (a •• z 
or A •• Z). 

BLoad <file> <addr> 

ListSegments 

Go <addr> 

Load binary file into memory. This loads a file 
into memory without any checking or conversion. 

List Q-code segments currently loaded. 

Start testbed executing at the specified micro 
address. 

Break <addr> Set microcode breakpoint. This replaces the 
microinstruction with a jump to the KRNL. When 
proceeding from a breakpoint, ODTPRQ replaces the 
original instruction and puts a breakpoint on the 
next instruction, executes it, then puts back the 
breakpoint and the next instruction. This means 
that the breakpoint instruction is not executed 
either immediately after its predecessor or 
immediately before its successor (unless the 
breakpoint is killed before proceeding). Therefore, 
the bre&cpoint instruction cannot use or set the 
condition codes, shifter, hold bit, jumps whose 
target is not specified in the instruction, 
interrupts, etc. 

KillBreak <addr> Clear microcode breakpoint. 

QBreak <segment> <routine> <instruction> 
Set Q-code breakpoint. 

QKillBreak <segment> <routine> <instruction> 
Clear Q-code breakpoint. 

- 3 -



ODTPRQ January 15, 1984 

ListBreaks List active breakpoints. 

Proceed <addr> Proceed from recent breakpoint. 

Dump <IJumpCommand> 
If Dump is given with no 

subsystem is entered (see 

a<file> 

Execute a dump command. 
parameters, the Dump 
below} • 

Read alternate command file. Command files cannot 
be nested but may be chained. An. in a command 
file will start a second command file and close the 
first one. 

ListFile <file> Write alternate list file. All ODTPRQ output will 
go to the file until another ListFile command. 
Typing return when ListFile prompts for a file name 
causes the output to go to the screen. 

SaveState <file> 

GetState <fi Ie> 

Save OdtPrq state on a file. Note that this does 
not save the testbed state. It saves the state 
that ODTPRQ thinks the testbed is in. It also 
saves any watches, breakpoints and Qcode segment 
names that it knows about. 

Get OdtPrq state from a file. This does not load 
anything into the testbed. It loads ODTPRQ with a 
previously saved state. SaveState and GetState are 
useful when a user wants to exit from ODTPRQ and 
return to it without disturbing the testbed. If 
ODTPRQ is run with a state file name as a parameter 
on the command line, then a breakpoint which 
occurred while ODTPRQ was not running will be 
correctly displayed. 

Debug <on:off> Controls ODTPRQ's internal debug mode. Leave it 
off. 

I 

(LF) 

= 

Open current location. 

Open next location. 

Open previous location. 

Change currently open location. 

- 4 -

o 

o 

o 



o 

o 

o 

ODTPRQ January 15, 1984 

3. DUMP COMMANDS 

When a Dump CODDD8nd is issued, ODTPRQ enters the Dump subsystem. 
This is signaled by the prompt changing from '>' to 'DUMP>'. The 
commands which may be entered in this mode are described below. A 
ListFile command stays in effect during Dumps. 

Help Print Dump subsystem help. 
or HELP key 

Quit Leave Dump subsystem. 

All Print all dumps. 

Memory <FirstAddr> <LastAddr> <form> 
Dump an area of memory. 

Registers <FirstAddr> <LastAddr> <form> 
Dump an area of the XY register file. 

Stack Do a memory stack trace back. At each level, 
the user is prompted with 'Print Info?:'. 
Answering 'y' gives information about that 
level of the stack. 

Trace 

Mfables 

IOTables 

Do a brief memory stack trace back. 
No 'Print info?' prompts. 

Dump the memory manager tables. 

Dump the 1/0 tables. This only works on 
ros F.l or earlier versions of the 
operating system. 

- 5 -



ODTPRQ January 15, 1984 

4. UIfnl.l.ANEOlJS 

ODTPRQ accepts 2O-bit memory addresses and displays 2O-bit 
register values, but .ill nat write 20-bit values to a register. 

When debugging microcode, it is sometimes useful to use a logic 
analyzer for tracing execution. The JC connector of the CPU brings 
out all of the micro address lines and the clock. JA and JB of the 
CPU carry the micro instruction. . 

Since the Clear command does not write to all of the address 
range of large memory boards, it is sometimes convenient to load 
and run the VFY microcode to eliminate the possibility of parity 
interrupts if an uninitialized upper memory location is read. To 
do this, issue the ODTPRQ commands: 

>load VFY 
>rOl2 
>go 4001 

{set RO to 2} 

When running a POS operating system, a Qbreakpoint set at 
&:ROUNGE 0 0 • ill get any uncaught except ions. 

In POS, Mem402 is the hardware configuration. Its value is 
normally initialized by the SYSB microcode at boot time. Bit 0 is 
set for a 16K CPU, bit 6 is set for a portrait screen and bit 11 is 
set for an EIO board. A PERQ is typically 100 (portrait screen, 4K 
CPU, lOB) and a PERQ2 is typically 4101 (portrait, 16K CPU, EIO). 

The KRNL uses R370 to hold the breakpoint number when it is 
entered at location 7401. This is one way for microcode to report 
errors. Some values of breakpoints are pre-defined: 

1. .19: Microcode breakpoint 
20: Seg Fault 
21: Stk Ovl 
22: Run Err 
23: 10 Seg Fault 
24: Memory parity error 
30: Krnl detected a bad command 
31: Krnl detected a bad interrupt return 
32: Krnl detected a bad interrupt 
>1023: QBreakpoint 

Setting bit 0 of R360 prevents the KRNL from serving display 
interrupts. 

Changing R371 moves the screen base in the KRNL display code. 

- 6 -

o 

o 

o 


